Director, Fuster Laboratory for Cognitive Neuroscience
Biography
Dr. Michele A. Basso is a Professor in the Departments of Psychiatry and Biobehavioral Sciences and Neurobiology. She studied Neuroscience at Stony Brook University in NY and was a post-doctoral fellow at the National Eye Institute, NIH. After serving as a faculty member at the University of Wisconsin Madison, she moved to UCLA to join the faculty and direct the Fuster Laboratory of Cognitive Neuroscience. The work performed in her laboratory is aimed at unravelling the neuronal circuits of decision-making in health and disease. Her work spans multiple species and employs multiple technologies designed to understand how memory and sensory information are combined to give rise to our decisions.
Publications
A selected list of publications:
Biography
Dr Bisley received his Ph.D. from the University of Melbourne in Australia where he studied the peripheral somatosensory system. He did his first post-doc at the University of Rochester working with Dr Tatiana Pasternak, where he studied the neural mechanisms underlying memory for motion. In 1999, he went to Washington, DC where he worked with Dr Michael E. Goldberg at Georgetown University and the National Eye Institute, studying the neural mechanisms underlying visuo-spatial attention. Dr Bisley moved to Columbia University with Dr Goldberg in 2002 and joined UCLA in 2006.
Biography
A vertebrate photoreceptor uses a G-protein receptor (rhodopsin) and a G-protein cascade to produce the electrical response that signals a change in light intensity. Powerful new techniques have made it possible to understand the working of this cascade in extraordinary detail. The reason for this is that practically every protein involved in the cascade in a photoreceptor, from the pigment molecule rhodopsin to the G-protein and channels, but including also a large number of control proteins, are expressed only in the photoreceptors and nowhere else in the body. This makes it possible with genetic techniques to create mice in which these proteins have been knocked out, over or under expressed, or replaced with proteins of modified structure. We use electrical recording to study the effects of such genetic alterations on the light responses of mouse rods and cones, in order to understand the role of these proteins in the visual cascade. We are especially interested in modulatory enzymes and their function in light and dark adaptation. We also have a long-standing interest in mechanisms of photoreceptor degeneration in genetically inherited disease.