Posts classified under: M

Harold Monbouquette, Ph.D.

Harold Monbouquette, Ph.D., is a Professor of Chemical and Biomolecular Engineering. His group conducts research focused on sensors and diagnostics, as well as the application of nanotechnology to these areas. He has been instrumental in creating an implantable microprobe with neurochemical sensing sites that exhibit rapid response times (<100 msec) while retaining high selectivity, in incorporating multiple sensing modalities on the same probe, in developing a PDMS microstamping method to deposit enzyme to targeted microelectrode sites, and in fabricating an on-probe reference site that results in 60-70% reduction in sensor noise.

Paul Macey, Ph.D.

Biography

Paul M. Macey is a neuroscientist who has worked at UCLA since 1999. He is an Associate Professor of Nursing, and serves in the School of Nursing Administration as Director of Information Technology and Innovation, and Chief Innovation Officer. Dr. Macey completed a degree in Electrical Engineering at the University of Canterbury, New Zealand, where he focused on bringing engineering approaches to the analysis of breathing signals recorded from infants during sleep. He started at UCLA in a post-doctoral position in the Department of Neurobiology, and continued as and Assistant then Associate Researcher. Dr. Macey then joined the School of Nursing and Brain Research Institute as a faculty member. Dr. Macey teaches in the undergraduate Nursing program, and serves on various faculty committees.

Istvan Mody, Ph.D.

Biography

Synaptic Signaling in Health and Disease Our research focuses on 1) the physiology, pharmacology, and pathology of synaptic transmission in the mammalian brain, and 2) the regulation of intracellular calcium homeostasis. The two themes ultimately converge in our quest for understanding how long-term alterations in the excitability of nerve cells and circuits are responsible for offsetting the frail balance between excitation and inhibition. Tipping this balance, either acutely of chronically, results in the nervous system showing signs of abnormal activity leading to specific brain disorders. We study synaptic transmission and the activation of extrasynaptic receptors in the healthy and the diseased brain. We presently carry out research in animal models of epilepsy, Huntington’s disease, stress, alcoholism, PMS/PMDD, postpartum depression, while also recording from human brain tissue surgically removed for the treatment of epilepsies. By studying the fundamental mechanisms responsible for the altered synapses and circuits our studies will lead to novel therapies for a number of devastating neurological and psychiatric disorders. The experimental approaches we use include patch-clamp recordings (whole-cell, single channel and perforated patch) in brain slices, in acutely isolated animal and human neurons, or in cultured neurons/slices; chronic recordings in vivo to monitor long-term changes in the excitability of circuits; infrared and fluorescent video microscopy and simultaneous recordings in live brain tissue; various neuroanatomical and immunohistochemical techniques; measurement of intraneuronal calcium and the binding kinetics of calcium to various calcium-binding proteins; molecular biological approaches aimed at reducing or altering specific brain proteins as in genetic knockouts/knockins and various methods aimed at altering cellular protein levels.

1 2 3 6