Posts classified under: Departments

Niranjala Tillakaratne, Ph.D

Publications

A selected list of publications:

Duru Paul, Tillakaratne Niranjala, Kim Jung, Zhong Hui, Stauber Stacey, Pham Tran, Xiao Mei Si, Edgerton V. Reggie, Roy Roland.   Spinal neuronal activation during locomotor-like activity enabled by epidural stimulation and 5-hydroxytryptamine agonists in spinal rats, J Neurosci Res, 2015; 93(8): 1229-1239.
Tillakaratne Niranjala J K, Duru Paul, Fujino Hidemi, Zhong Hui, Xiao Mei Si, Edgerton V Reggie, Roy Roland R   Identification of interneurons activated at different inclines during treadmill locomotion in adult rats Journal of neuroscience research, 2014; 92(12): 1714-22.
Shah Prithvi K, Garcia-Alias Guillermo, Choe Jaehoon, Gad Parag, Gerasimenko Yury, Tillakaratne Niranjala, Zhong Hui, Roy Roland R, Edgerton V Reggie   Use of quadrupedal step training to re-engage spinal interneuronal networks and improve locomotor function after spinal cord injury Brain : a journal of neurology, 2013; 136(Pt 11): 3362-77.
Joseph M Selvan, Ying Zhe, Zhuang Yumei, Zhong Hui, Wu Aiguo, Bhatia Harsharan S, Cruz Rusvelda, Tillakaratne Niranjala J K, Roy Roland R, Edgerton V Reggie, Gomez-Pinilla Fernando   Effects of diet and/or exercise in enhancing spinal cord sensorimotor learning PloS one, 2012; 7(7): e41288.
Joseph M Selvan, Bilousova Tina, Zdunowski Sharon, Wu Zhongqi-Phyllis, Middleton Blake, Boudzinskaia Maia, Wong Bonnie, Ali Noore, Zhong Hui, Yong Jing, Washburn Lorraine, Escande-Beillard Nathalie, Dang Hoa, Edgerton V Reggie, Tillakaratne Niranjala J K, Kaufman Daniel L   Transgenic mice with enhanced neuronal major histocompatibility complex class I expression recover locomotor function better after spinal cord injury Journal of neuroscience research, 2011; 89(3): 365-72.
Tillakaratne NJ, Guu JJ, de Leon RD, Bigbee AJ, London NJ, Zhong H, Ziegler M,Joynes R, Roy RR, Edgerton VR.   Functional recovery of stepping in rats after a complete neonatal spinal cord transection is not due to regrowth across the lesion site , Neuroscience, 2010; 166: 23-33.
Khristy W, Ali NJ, Bravo AB, de Leon R, Roy RR, Zhong H, London NJ, Edgerton VR, Tillakaratne NJ   Changes in GABA(A) receptor subunit gamma 2 in extensor and flexor motoneurons and astrocytes after spinal cord transection and motor training, Brain Res, 2009; 1273: 9-17.
Otoshi CK, Walwyn WM, Tillakaratne NJ, Zhong H, Roy RR, Edgerton VR   Distribution and localization of 5-HT(1A) receptors in the rat lumbar spinal cord after transection and deafferentation, J Neurotrauma, 2009; 26: 575-84.
Jindrich DL, Joseph MS, Otoshi CK, Wei RY, Zhong H, Roy RR, Tillakaratne NJ,Edgerton VR   Spinal learning in the adult mouse using the Horridge paradigm, J Neurosci Methods, , 2009; 182(2): 250-4.
Edgerton VR, Courtine G, Gerasimenko YP, Lavrov I, Ichiyama RM, Fong AJ, Cai LL, Otoshi CK, Tillakaratne NJ, Burdick JW, Roy RR   Training locomotor networks, Brain Res Rev, 2008; 57: 241-54 (Review).
Bigbee AJ, Crown ED, Ferguson AR, Roy RR, Tillakaratne NJ, Grau JW, Edgerton VR   Two chronic motor training paradigms differentially influence acute, Behav Brain Res, 2007; 180: 95-101.
Ahn, SN Guu, JJ Tobin, AJ Edgerton, VR Tillakaratne, NJ   Use of c-fos to identify activity-dependent spinal neurons after stepping in intact adult rats Spinal Cord, 2006; 44: 547-59.
Zanjani H, Lemaigre-Dubreuil Y, Tillakaratne NJK, Blokhin A, McMahon RP, Tobin AJ and Vogel MW.   Cerebellar Purkinje cell loss in aging Hu-Bcl2 transgenic mice, J Comp Neurol, 2004; 475: 481-92.
Edgerton VR, Tillakaratne NJK, Bigbee AJ, de Leon RD, and Roy RR   Locomotor recovery potential after spinal cord injury, Neuro-behavioral determinants of interlimb coordination, edited by Swinnen S. & P Duysens J, 2004; .
Edgerton, VR Tillakaratne, NJ Bigbee, AJ de Leon, RD Roy, RR   Plasticity of the spinal neural circuitry after injury Annual review of neuroscience. , 2004; 27: 145-67.
Hoang, TX Nieto, JH Tillakaratne, NJ Havton, LA   Autonomic and motor neuron death is progressive and parallel in a lumbosacral ventral root avulsion model of cauda equina injury The Journal of comparative neurology. , 2003; 467(4): 477-86.
Mackie, M Hughes, DI Maxwell, DJ Tillakaratne, NJ Todd, AJ   Distribution and colocalisation of glutamate decarboxylase isoforms in the rat spinal cord Neuroscience. , 2003; 119(2): 461-72.
Tillakaratne, NJ de Leon, RD Hoang, TX Roy, RR Edgerton, VR Tobin, AJ   Use-dependent modulation of inhibitory capacity in the feline lumbar spinal cord The Journal of neuroscience, 2002; 22(8): 3130-43.
Edgerton, VR Leon, RD Harkema, SJ Hodgson, JA London, N Reinkensmeyer, DJ Roy, RR Talmadge, RJ Tillakaratne, NJ Timoszyk, W Tobin, A   Retraining the injured spinal cord The Journal of physiology. , 2001; 533(Pt 1): 15-22.
Tillakaratne, NJ Mouria, M Ziv, NB Roy, RR Edgerton, VR Tobin, AJ   Increased expression of glutamate decarboxylase (GAD(67)) in feline lumbar spinal cord after complete thoracic spinal cord transection Journal of neuroscience research. , 2000; 60(2): 219-30.
Banerjee, PK Tillakaratne, NJ Brailowsky, S Olsen, RW Tobin, AJ Snead, OC   Alterations in GABAA receptor alpha 1 and alpha 4 subunit mRNA levels in thalamic relay nuclei following absence-like seizures in rats Experimental neurology. , 1998; 154(1): 213-23.
Banerjee PK, Olsen RW, Tillakaratne NJK, Brailowsky S, Tobin AJ, and Snead OC, 3rd.   Absence seizures decrease steroid modulation of t-[35S]butylbicyclophosphorothionate binding in thalamic relay nuclei, J Pharmacol Exp Ther, 1998; 287: 766-772.
Edgerton VR, Roy RR, de Leon RD, Tillakaratne NJK, and Hodgson JA.   Does motor learning occur in spinal cord?, The neuroscientist, 1997; 3: 287-294.
Edgerton, VR de Leon, RD Tillakaratne, N Recktenwald, MR Hodgson, JA Roy, RR   Use-dependent plasticity in spinal stepping and standing Advances in neurology. , 1997; 72: 233-47.
Mahmoudi M, Kang M H, Tillakaratne N, Tobin A J, Olsen R W   Chronic intermittent ethanol treatment in rats increases GABA(A) receptor alpha4-subunit expression: possible relevance to alcohol dependence Journal of neurochemistry, 1997; 68(6): 2485-92.
Tillakaratne N J, Medina-Kauwe L, Gibson K M   gamma-Aminobutyric acid (GABA) metabolism in mammalian neural and nonneural tissues Comparative biochemistry and physiology. Part A, Physiology, 1995; 112(2): 247-63.
Segovia J, Lawless G M, Tillakaratne N J, Brenner M, Tobin A J   Cyclic AMP decreases the expression of a neuronal marker (GAD67) and increases the expression of an astroglial marker (GFAP) in C6 cells Journal of neurochemistry, 1994; 63(4): 1218-25.
Hendrickson A E, Tillakaratne N J, Mehra R D, Esclapez M, Erickson A, Vician L, Tobin A J   Differential localization of two glutamic acid decarboxylases (GAD65 and GAD67) in adult monkey visual cortex The Journal of comparative neurology, 1994; 343(4): 566-81.
Medina-Kauwe L K, Tillakaratne N J, Wu J Y, Tobin A J   A rat brain cDNA encodes enzymatically active GABA transaminase and provides a molecular probe for GABA-catabolizing cells Journal of neurochemistry, 1994; 62(4): 1267-75.
Esclapez M, Tillakaratne N J, Kaufman D L, Tobin A J, Houser C R   Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms The Journal of neuroscience : the official journal of the Society for Neuroscience, 1994; 14(3 Pt 2): 1834-55.
Esclapez M, Tillakaratne N J, Tobin A J, Houser C R   Comparative localization of mRNAs encoding two forms of glutamic acid decarboxylase with nonradioactive in situ hybridization methods The Journal of comparative neurology, 1993; 331(3): 339-62.
Greif K F, Tillakaratne N J, Erlander M G, Feldblum S, Tobin A J   Transient increase in expression of a glutamate decarboxylase (GAD) mRNA during the postnatal development of the rat striatum Developmental biology, 1992; 153(1): 158-64.
Kasckow J W, Tillakaratne N J, Kim H, Strecker G J, Tobin A J, Olsen R W   Expression of GABAA receptor polypeptides in clonal rat cell lines Brain research, 1992; 581(1): 143-7.
Bu D F, Erlander M G, Hitz B C, Tillakaratne N J, Kaufman D L, Wagner-McPherson C B, Evans G A, Tobin A J   Two human glutamate decarboxylases, 65-kDa GAD and 67-kDa GAD, are each encoded by a single gene Proceedings of the National Academy of Sciences of the United States of America, 1992; 89(6): 2115-9.
Tillakaratne N J, Erlander M G, Collard M W, Greif K F, Tobin A J   Glutamate decarboxylases in nonneural cells of rat testis and oviduct: differential expression of GAD65 and GAD67 Journal of neurochemistry, 1992; 58(2): 618-27.
Erlander M G, Tillakaratne N J, Feldblum S, Patel N, Tobin A J   Two genes encode distinct glutamate decarboxylases Neuron, 1991; 7(1): 91-100.
Khrestchatisky M, MacLennan A J, Tillakaratne N J, Chiang M Y, Tobin A J   Sequence and regional distribution of the mRNA encoding the alpha 2 polypeptide of rat gamma-aminobutyric acidA receptors Journal of neurochemistry, 1991; 56(5): 1717-22.
MacLennan A J, Brecha N, Khrestchatisky M, Sternini C, Tillakaratne N J, Chiang M Y, Anderson K, Lai M, Tobin A J   Independent cellular and ontogenetic expression of mRNAs encoding three alpha polypeptides of the rat GABAA receptor Neuroscience, 1991; 43(2-3): 369-80.
Greif K F, Erlander M G, Tillakaratne N J, Tobin A J   Postnatal expression of glutamate decarboxylases in developing rat cerebellum Neurochemical research, 1991; 16(3): 235-42.
Tobin A J, Khrestchatisky M, MacLennan A J, Chiang M Y, Tillakaratne N J, Xu W T, Jackson M B, Brecha N, Sternini C, Olsen R W   Structural, developmental and functional heterogeneity of rat GABAA receptors Advances in experimental medicine and biology, 1991; 287(3): 365-74.
John Maclennan A, Frantz G D, Weatherwax R C, Tillakaratne N J, Tobin A J   Expression of mRNAs that encode D2 dopamine receptor subtypes: Anatomical, developmental, and pharmacological studies Molecular and cellular neurosciences, 1990; 1(2): 151-60.
Segovia J, Tillakaratne N J, Whelan K, Tobin A J, Gale K   Parallel increases in striatal glutamic acid decarboxylase activity and mRNA levels in rats with lesions of the nigrostriatal pathway Brain research, 1990; 529(1-2): 345-8.
Kim Y S, Thomas J W, Tillakaratne N J, Montpied P, Suzdak P D, Banner C, Ginns E, Tobin A J, Paul S M   Glutamic acid decarboxylase mRNA in rat brain: regional distribution and effects of intrastriatal kainic acid Brain research, 1987; 427(1): 77-82.

Xiangdong William Yang, M.D., Ph.D.

Biography

Dr. X. William Yang is a professor in the Department of Psychiatry & Biobehavioral Sciences at David Geffen School of Medicine at UCLA. He is also a member of the Center for Neurobehavioral Genetics at Semel Institute for Neuroscience & Human Behaviors, and a member of the Brain Research Institute at UCLA. He has served as a regular member at the NIH’s Cell Death in Neurodegeneration (CDIN) Study Section, a Scientific Advisory Board member of the Hereditary Disease Foundation, and a faculty member for Faculty 1000 Medicine?s Neurogenetics Section. William grew up in Tianjin, China. He obtained a combined M.S. and B.S. degrees with summa cum laude from Molecular Biophysics & Biochemistry Department at Yale University in 1991. He received Ph.D. in Molecular Genetics and Neuroscience from Rockefeller University in 1998. During his PhD thesis research with Dr. Nathaniel Heintz, William co-invented (together with Nat Heintz and Peter Model) the first recombineering technology to modify large pieces of DNA called Bacterial Artificial Chromosomes (BACs) and to generate BAC transgenic mice. The BAC transgenic technology is now a widely-used tool to generate transgenic animals for analyses of gene expression and gene function, and for modeling human diseases. After obtaining his Ph.D. degree, William went on to complete his M.D. training from Weill Medical College of Cornell University in 2000, and his Medicine Internship at New York-Presbyterian Hospital in 2001. After a brief postdoctoral training with Nat Heintz at Rockefeller University, William joined UCLA as an Assistant Professor in Dept. of Psychiatry in 2002.