Posts classified under: Neurobiology

David Glanzman, Ph.D.

Publications

A selected list of publications:

Roberts Adam C, Bill Brent R, Glanzman David L   Learning and memory in zebrafish larvae Frontiers in neural circuits, 2013; 7: 126.
Glanzman David L   PKM and the maintenance of memory F1000 biology reports, 2013; 5: 4.
Glanzman David L   David L. Glanzman Current biology : CB, 2012; 22(21): R895-7.
Cai Diancai, Pearce Kaycey, Chen Shanping, Glanzman David L   Reconsolidation of long-term memory in Aplysia Current biology : CB, 2012; 22(19): 1783-8.
Glanzman David L   Behavioral neuroscience: no easy path from genes to cognition Current biology : CB, 2012; 22(9): R302-4.
Glanzman David L   Olfactory habituation: fresh insights from flies Proceedings of the National Academy of Sciences of the United States of America, 2011; 108(36): 14711-2.
Cai Diancai, Pearce Kaycey, Chen Shanping, Glanzman David L   Protein kinase M maintains long-term sensitization and long-term facilitation in aplysia The Journal of neuroscience : the official journal of the Society for Neuroscience, 2011; 31(17): 6421-31.
Roberts Adam C, Reichl Jun, Song Monica Y, Dearinger Amanda D, Moridzadeh Naseem, Lu Elaine D, Pearce Kaycey, Esdin Joseph, Glanzman David L   Habituation of the C-start response in larval zebrafish exhibits several distinct phases and sensitivity to NMDA receptor blockade PloS one, 2011; 6(12): e29132.
Issa Fadi A, O’Brien Georgeann, Kettunen Petronella, Sagasti Alvaro, Glanzman David L, Papazian Diane M   Neural circuit activity in freely behaving zebrafish (Danio rerio) The Journal of experimental biology, 2011; 214(Pt 6): 1028-38.
Glanzman David L   Common mechanisms of synaptic plasticity in vertebrates and invertebrates Current biology : CB, 2010; 20(1): R31-6.
Glanzman David L   Ion pumps get more glamorous Nature neuroscience, 2010; 13(1): 4-5.
Esdin Joseph, Pearce Kaycey, Glanzman David L   Long-term habituation of the gill-withdrawal reflex in aplysia requires gene transcription, calcineurin and L-type voltage-gated calcium channels Frontiers in behavioral neuroscience, 2010; 4(1): 181.
Glanzman David L   Habituation in Aplysia: the Cheshire cat of neurobiology Neurobiology of learning and memory, 2009; 92(2): 147-54.
Villareal Greg, Li Quan, Cai Diancai, Fink Ann E, Lim Travis, Bougie Joanna K, Sossin Wayne S, Glanzman David L   Role of protein kinase C in the induction and maintenance of serotonin-dependent enhancement of the glutamate response in isolated siphon motor neurons of Aplysia californica The Journal of neuroscience : the official journal of the Society for Neuroscience, 2009; 29(16): 5100-7.
Fulton Daniel, Condro Michael C, Pearce Kaycey, Glanzman David L   The potential role of postsynaptic phospholipase C activity in synaptic facilitation and behavioral sensitization in Aplysia Journal of neurophysiology, 2008; 100(1): 108-16.
Glanzman DL   New tricks for an old slug: The critical role of postsynaptic mechanisms in learning and memory in Aplysia, Prog. Brain Res, 2008; 169C: 277-292.
Glanzman David L   New tricks for an old slug: the critical role of postsynaptic mechanisms in learning and memory in Aplysia Progress in brain research, 2008; 169(12): 277-92.
Glanzman David L   Octopus conditioning: a multi-armed approach to the LTP–learning question Current biology : CB, 2008; 18(12): R527-30.
Cai Diancai, Chen Shanping, Glanzman David L   Postsynaptic regulation of long-term facilitation in Aplysia Current biology : CB, 2008; 18(12): 920-5.
Villareal Greg, Li Quan, Cai Diancai, Glanzman David L   The role of rapid, local, postsynaptic protein synthesis in learning-related synaptic facilitation in aplysia Current biology : CB, 2007; 17(23): 2073-80.
Jami SA, Wright WG, Glanzman DL.   Differential classical conditioning of the gill-withdrawal reflex in Aplysia recruits both NMDA receptor-dependent enhancement and NMDA receptor-dependent depression of the reflex, J Neurosci, 2007; 27(12): 3064-8.
Download
Glanzman, D. L   Simple minds: the neurobiology of invertebrate learning and memory, Invertebrate Neurobiology, 2007; 347-380.
Villareal G, Li Q, Cai D, Glanzman DL   The role of rapid, local, postsynaptic protein synthesis in learning-related synaptic facilitation in Aplysia, Curr. Biol, 2007; 17(23): 2073-2080.
Download
Jami Shekib A, Wright William G, Glanzman David L   Differential classical conditioning of the gill-withdrawal reflex in Aplysia recruits both NMDA receptor-dependent enhancement and NMDA receptor-dependent depression of the reflex The Journal of neuroscience : the official journal of the Society for Neuroscience, 2007; 27(12): 3064-8.
Glanzman DL.   The cellular mechanisms of learning in Aplysia: of blind men and elephants, Biol Bull, 2006; 210(3): 271-9.
Download
Glanzman David L   The cellular mechanisms of learning in Aplysia: of blind men and elephants The Biological bulletin, 2006; 210(3): 271-9.
Li Q, Roberts AC, Glanzman DL.   Synaptic facilitation and behavioral dishabituation in Aplysia: dependence on release of Ca2+ from postsynaptic intracellular stores, postsynaptic exocytosis, and modulation of postsynaptic AMPA receptor efficacy, J Neurosci, 2005; 25(23): 5623-37.
Download
Li Quan, Roberts Adam C, Glanzman David L   Synaptic facilitation and behavioral dishabituation in Aplysia: dependence on release of Ca2+ from postsynaptic intracellular stores, postsynaptic exocytosis, and modulation of postsynaptic AMPA receptor efficacy The Journal of neuroscience : the official journal of the Society for Neuroscience, 2005; 25(23): 5623-37.
Roberts AC, Glanzman DL.   Learning in Aplysia: looking at synaptic plasticity from both sides, Trends Neurosci, 2003; 26(12): 662-70.
Download
Ezzeddine Y, Glanzman DL.   Prolonged habituation of the gill-withdrawal reflex in Aplysia depends on protein synthesis, protein phosphatase activity, and postsynaptic glutamate receptors, J Neurosci, 2003; 23(29): 9585-94.
Download
Chitwood RA, Li Q, Glanzman DL.   Serotonin facilitates AMPA-type reponses in isolated siphon motor neurons of Aplysia in culture, J Physiol, 2001; 534(Pt 2): 501-10.
Download
Murphy GG, Glanzman DL.   Cellular analog of differential classical conditioning in Aplysia: disruption by the NMDA receptor antagonist DL-2-amino-5-phosphonovalerate, J Neurosci, 1999; 19(23): 10595-602.
Download

Weizhe Hong, Ph.D.

Biography

The Hong Lab employs a multidisciplinary approach to identify the molecular and neural circuit mechanisms underlying normal social behaviors as well as their dysregulations in neuropsychiatric disorders. Social behaviors are essential for the survival and reproduction of animals. The control of social behavior is of particular importance in social species such as humans. Abnormalities in social behaviors are associated with several neuropsychiatric disorders, such as autism spectrum disorders and schizophrenia.  Despite its importance, many fundamental questions regarding social behavior and its disorders still remain unanswered. We aim to understand how social behavior is regulated at the molecular and circuit level and how social behavior and social experience lead to molecular and circuit level changes in the brain.

We study these questions across molecular, circuit, and behavioral levels, by linking genes to circuits to behaviors. To do that, we take a multi-disciplinary approach and utilize a variety of experimental and computational technologies, including but not limited to optogenetics/chemogenetics, in vivo/vitro calcium imaging and electrophysiology, various genetic and molecular biology techniques, systems approaches such as next-generation sequencing and bioinformatics, and engineering and computational approaches such as machine learning and computer vision.

Ronald Harper, Ph.D.

Biography

The laboratory examines neural mechanisms underlying sleep state: control of breathing, somatomotor activity, and cardiovascular action in developing and adult small animal preparations. Neural mechanisms are examined through neurophysiologic techniques which include assessment of intrinsic optical changes in neural tissue, functional magnetic resonance imaging, and chronic single neuron recording; the optical imaging and cell recording studies are often combined with microdialysis techniques to determine neurochemical mechanisms underlying cell action. We found that a substantial portion of sleep effects on normal and disordered breathing result from rostral brain influences on pontine and medullary structures, that activity over wide areas of these structures can be visualized during ventilatory and pressor challenges in freely behaving animals, and that immature development of mechanisms controlling descending rostral brain influences on breathing can place the organism at risk.