Posts classified under: Computational Neuroscience

Ausaf Bari, MA, M.D., Ph.D., FAANS

Dr. Bari specializes in the neurosurgical repair and restoration of brain and nerve function. Following his neurosurgery residency training at UCLA, Dr. Bari was awarded the prestigious William P. Van Wagenen Fellowship to train at the world-renowned functional neurosurgery program at the University of Toronto. He has extensive clinical and research experience in the use of deep brain stimulation (DBS) in the treatment of both movement and psychiatric disorders. Dr. Bari’s clinical practice includes DBS surgery for Parkinson’s disease, tremor, dystonia, depression and OCD. In addition, his clinical practice includes neurosurgery for brain tumors, pain, and peripheral nerve disorders.

Dr. Bari’s research focuses on an interdisciplinary approach to studying the neurobiology underlying movement and psychiatric disorders and expanding the frontiers of neurosurgery to treat those disorders. As a part of his fellowship training, Dr. Bari studied the relationship between the motor and reward systems of the brain and the use of deep brain stimulation to modify and enhance them. A native of California, Dr. Bari completed his neurosurgery residency training at UCLA after receiving his MD and PhD degrees from Boston University. He completed his undergraduate training at UC Berkeley in the field of neurobiology.

Loes Olde Loohuis, Ph.D.

Dr. Loes Olde Loohuis’ research focuses on elucidating the underlying molecular mechanisms of severe mental illness, in particular schizophrenia and bipolar disorder, by utilizing and developing computational approaches to leverage  multi-level data (including psychiatric phenotypes, health records and molecular phenotypes).

Xia Yang, Ph.D.

Biography

Dr. Xia Yang received her Ph.D. in Molecular Genetics and Bioinformatics from Georgia State University and had postdoctoral training in Systems Genetics at UCLA. She was Senior Research Scientist at Rosetta Inpharmatics/Merck & Co. and Director of Systems Biology at Sage Bionetworks prior to returning to UCLA as a faculty member.

Research Interests

Our research focuses on developing and applying multitissue multiomics systems biology approaches to dissect the molecular networks underlying diverse complex diseases, ranging from cardiometabolic diseases to neurodegenerative and neurological disorders, and utilize the systems level networks to guide precision medicine. Through integration of genetic, transcriptional, epigenomic, proteomic, gut microbiota, and phenotypic data from human and rodent populations, we investigate how complex interactions between genetic and environmental risk factors perturb tissue- and cell-specific gene networks which in turn induce variations in disease susceptibility. Subsequently, we use the causal molecular networks of diseases as the basis for therapeutic target identification and biomarker discovery.

 

Education

B.S., Pharmacy, Shandong University 1993
Ph.D., Molecular Genetics/Bioinformatics, Georgia State University 2003

 

Selected Publications

Yang X. “Multi-tissue Multi-omics Systems Biology to Dissect Complex Diseases”. Trends in Molecular Medicine, 2020.

Liu W, Venugopal S, Majid S, Ahn IS, Diamante G, Hong J, Yang X*, Chandler SH*. “Single-cell RNA-seq Analysis of the Brainstem of Mutant SOD1 mice Reveals Perturbed Cell Types and Pathways of Amyotrophic Lateral Sclerosis”. Neurobiology of Disease, 141: 104877, 2020.

Rajbhandari P+, Arneson D+, Feng AC, Ahn IS, Diamante G, Zaghari N, Thomas BJ, Vergnes L, Lee SD, Reue K, Smale ST, Yang X, Tontonoz P. “Single Cell Analysis Reveals Immune Cell-Adipocyte Crosstalk Regulating the Transcription of Thermogenic Adipocytes”. eLife 8:e49501, 2019.

Zhang G, Byun HR, Ying Z, Blencowe M, Zhao Y, Hong J, Shu L, Gomez-Pinilla F, Yang X. “Differential Metabolic and Multi-tissue Transcriptomic Responses to Fructose Consumption among Genetically Diverse Mice”. BBA – Molecular Basis of Disease. 1866: 165569, 2020.

Shu L, Meng Q, Tsai B, Diamante G, Chen Y, Mikhail A, Luk H, Ritz B, Allard P, Yang X, “Prenatal Bisphenol A Exposure in Mice Induces Multi-tissue Multi-omics Disruptions Linking to Cardiometabolic Disorders”, Endocrinology, 160 : 409-429, 2019.

Arneson D, Zhuang Y, Byun HR, Ahn IS, Ying Z, Zhang G, Gomez-Pinilla F, Yang X, “Single Cell Molecular Alterations Reveal Pathogenesis and Targets of Concussive Brain Injury”, Nature Communications, 9 : 3894, 2018.

Emilsson V, llkov M, Lamb JR, Finkel N, Gudmundsson EF, Pitts R, Hoover H, Jennings LL, Horman SR, Aspelund T, Shu L, Trifonov V, Gudmundsdottir V, Sigurdsson S, Manolescu A, Zhu J, Lesley SA, To J, Zhang J, Harris TB, Launer LJ, Zhang B, Eiriksdottir G, Yang X, Smith AV, Orth AP, Gudnason V, “Coregulatory Networks of Human Serum Proteins Link Genetics to Disease”, Science, 361 : 769-773, 2018.

Kurt Z, Barrere-Cain R, LaGuardia J, Mehrabian JM, Pan C, Hui ST, Norheim F, Zhou Z, Hasin Y, Lusis AJ, Yang X, “Tissue-specific Pathways and Networks Underlying Sexual Dimorphism in Non-Alcoholic Fatty Liver Disease”, Biology of Sex Differences, 9 : 46- (2018) .

Krishnan KC, Kurt Z, Barrere-Cain R, Sabir S, Das A, Floyd R, Vergnes L, Zhao Y, Che N, Charugundla S, Qi H, Zhou Z, Meng Y, Pan C, Seldin MM, Norheim F, Hui S, Reue K, Lusis, AJ, Yang X., “Integration of Multi-omics Data from Mouse Diversity Panel Highlights Mitochondrial Dysfunction in Non-Alcoholic Fatty Liver Disease”, Cell Systems, 6 : 1-13, 2018.

Shu L, Chen KHK, Zhang G, Huan T, Kurt Z, Zhao Y, Codoni V, Tregouet DA, Yang J, Wilson JG, Luo X, Levy D, Lusis AJ, Liu S, Yang X, “Shared Genetic Regulatory Networks for Cardiovascular Disease and Type 2 Diabetes in Multi-ethnic Populations”, PLOS Genetics, 13 (9): e1007040, 2017.